83 research outputs found

    Representation Learning Method of Graph Convolutional Network Based on Structure Enhancement

    Get PDF
    Network representation learning has attracted widespread attention as a pre-processing process for some machine learning and deep learning tasks. However, most existing methods only consider influence of nodes' low-order neighbors to represent them. Either nodes' high-order neighbor or the intrinsic characteristic attributes of nodes are ignored, leading to the effect of network representation learning that needs to be improved. This paper proposes a novel model named Structure Enhanced Graph Convolutional Network (SEGCN) to address these limitations. SEGCN consists of the following components, i.e., the network structure enhancement to transform weak relationship into strong relationship, the node feature aggregation to fuse high-order neighbor information. Hence, the SEGCN model can simultaneously integrate network structure information, attribute information, and high-order neighbor relationships together. Experimental results for node classification and node clustering on six datasets show that SEGCN achieves better effectiveness and efficiency than state-of-the-art baselines

    Achievable Diversity Order of HARQ-Aided Downlink NOMA Systems

    Full text link
    The combination between non-orthogonal multiple access (NOMA) and hybrid automatic repeat request (HARQ) is capable of realizing ultra-reliability, high throughput and many concurrent connections particularly for emerging communication systems. This paper focuses on characterizing the asymptotic scaling law of the outage probability of HARQ-aided NOMA systems with respect to the transmit power, i.e., diversity order. The analysis of diversity order is carried out for three basic types of HARQ-aided downlink NOMA systems, including Type I HARQ, HARQ with chase combining (HARQ-CC) and HARQ with incremental redundancy (HARQ-IR). The diversity orders of three HARQ-aided downlink NOMA systems are derived in closed-form, where an integration domain partition trick is developed to obtain the bounds of the outage probability specially for HARQ-CC and HARQ-IR-aided NOMA systems. The analytical results show that the diversity order is a decreasing step function of transmission rate, and full time diversity can only be achieved under a sufficiently low transmission rate. It is also revealed that HARQ-IR-aided NOMA systems have the largest diversity order, followed by HARQ-CC-aided and then Type I HARQ-aided NOMA systems. Additionally, the users' diversity orders follow a descending order according to their respective average channel gains. Furthermore, we expand discussions on the cases of power-efficient transmissions and imperfect channel state information (CSI). Monte Carlo simulations finally confirm our analysis

    A many-objective evolutionary algorithm based on rotated grid

    Get PDF
    Evolutionary optimization algorithms, a meta-heuristic approach, often encounter considerable challenges in many-objective optimization problems (MaOPs). The Pareto-based dominance loses its effectiveness in MaOPs, which are defined as having more than three objectives. Therefore, a more valid selection method is proposed to balance convergence and distribution. This paper proposes an algorithm using rotary grid technology to solve MaOPs (denoted by RGridEA). The algorithm uses the rotating grid to partition the objective space. Instead of using the Pareto non-dominated sorting strategy to layer the population a novel stratified method is used to enhance convergence effectively and make use of the grid to improve distribution and uniformity. Finally, with the other seven algorithm was tested on the test function DTLZ series analysis, confirming RGridEA is effective in resolving MaOPs

    Outage Performance and Optimal Design of MIMO-NOMA Enhanced Small Cell Networks With Imperfect Channel-State Information

    Full text link
    This paper focuses on boosting the performance of small cell networks (SCNs) by integrating multiple-input multiple-output (MIMO) and non-orthogonal multiple access (NOMA) in consideration of imperfect channel-state information (CSI). The estimation error and the spatial randomness of base stations (BSs) are characterized by using Kronecker model and Poisson point process (PPP), respectively. The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies, including random grouping and distance-based grouping. It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime, while the outage performance deteriorates if the intensity is sufficiently low. Besides, as the channel uncertainty lessens, the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference.Moreover, highly correlated estimation error ameliorates the outage performance under a low quality of CSI, otherwise it behaves oppositely. Afterwards, the goodput is maximized by choosing appropriate precoding matrix, receiver filters and transmission rates. In the end, the numerical results verify our analysis and corroborate the superiority of our proposed algorithm

    How Long Non-Coding RNAs and MicroRNAs Mediate the Endogenous RNA Network of Head and Neck Squamous Cell Carcinoma: a Comprehensive Analysis

    Get PDF
    Background/Aims: Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs) to compete for microRNAs (miRNAs) in cancer metastasis. Head and neck squamous cell carcinoma (HNSCC) is one of the most common human cancers and rare biomarkers could predict the clinical prognosis of this disease and its therapeutic effect. Methods: Weighted gene co-expression network analysis (WGCNA) was performed to identify differentially expressed mRNAs (DEmRNAs) that might be key genes. GO enrichment and protein–protein interaction (PPI) analyses were performed to identify the principal functions of the DEmRNAs. An lncRNA-miRNA-mRNA network was constructed to understand the regulatory mechanisms in HNSCC. The prognostic signatures of mRNAs, miRNAs, and lncRNAs were determined by Gene Expression Profiling Interactive Analysis (GEPIA) and using Kaplan–Meier survival curves for patients with lung squamous cell carcinoma. Results: We identified 2,023 DEmRNAs, 1,048 differentially expressed lncRNAs (DElncRNAs), and 82 differentially expressed miRNAs (DEmiRNAs). We found that eight DEmRNAs, 53 DElncRNAs, and 16 DEmiRNAs interacted in the ceRNA network. Three ceRNAs (HCG22, LINC00460 and STC2) were significantly correlated with survival. STC2 transcript levels were significantly higher in tumour tissues than in normal tissues, and the STC2 expression was slightly upregulated at different stages of HNSCC. Conclusion: LINC00460, HCG22 and STC2 exhibited aberrant levels of expression and may participate in the pathogenesis of HNSCC

    Zero-Forcing Based Downlink Virtual MIMO-NOMA Communications in IoT Networks

    Full text link
    To support massive connectivity and boost spectral efficiency for internet of things (IoT), a downlink scheme combining virtual multiple-input multiple-output (MIMO) and nonorthogonal multiple access (NOMA) is proposed. All the single-antenna IoT devices in each cluster cooperate with each other to establish a virtual MIMO entity, and multiple independent data streams are requested by each cluster. NOMA is employed to superimpose all the requested data streams, and each cluster leverages zero-forcing detection to de-multiplex the input data streams. Only statistical channel state information (CSI) is available at base station to avoid the waste of the energy and bandwidth on frequent CSI estimations. The outage probability and goodput of the virtual MIMO-NOMA system are thoroughly investigated by considering Kronecker model, which embraces both the transmit and receive correlations. Furthermore, the asymptotic results facilitate not only the exploration of physical insights but also the goodput maximization. In particular, the asymptotic outage expressions provide quantitative impacts of various system parameters and enable the investigation of diversity-multiplexing tradeoff (DMT). Moreover, power allocation coefficients and/or transmission rates can be properly chosen to achieve the maximal goodput. By favor of Karush-Kuhn-Tucker conditions, the goodput maximization problems can be solved in closed-form, with which the joint power and rate selection is realized by using alternately iterating optimization.Besides, the optimization algorithms tend to allocate more power to clusters under unfavorable channel conditions and support clusters with higher transmission rate under benign channel conditions

    RepBNN: towards a precise Binary Neural Network with Enhanced Feature Map via Repeating

    Full text link
    Binary neural network (BNN) is an extreme quantization version of convolutional neural networks (CNNs) with all features and weights mapped to just 1-bit. Although BNN saves a lot of memory and computation demand to make CNN applicable on edge or mobile devices, BNN suffers the drop of network performance due to the reduced representation capability after binarization. In this paper, we propose a new replaceable and easy-to-use convolution module RepConv, which enhances feature maps through replicating input or output along channel dimension by ÎČ\beta times without extra cost on the number of parameters and convolutional computation. We also define a set of RepTran rules to use RepConv throughout BNN modules like binary convolution, fully connected layer and batch normalization. Experiments demonstrate that after the RepTran transformation, a set of highly cited BNNs have achieved universally better performance than the original BNN versions. For example, the Top-1 accuracy of Rep-ReCU-ResNet-20, i.e., a RepBconv enhanced ReCU-ResNet-20, reaches 88.97% on CIFAR-10, which is 1.47% higher than that of the original network. And Rep-AdamBNN-ReActNet-A achieves 71.342% Top-1 accuracy on ImageNet, a fresh state-of-the-art result of BNNs. Code and models are available at:https://github.com/imfinethanks/Rep_AdamBNN.Comment: This paper has absolutely nothing to do with repvgg, rep means repeatin

    Subcarrier and Power Allocation for the Downlink of Multicarrier NOMA Systems

    Get PDF
    International audienceThis paper investigates the joint subcarrier and power allocation problem for the downlink of a multi-carrier non-orthogonal multiple access (MC-NOMA) system. A novel three-step resource allocation framework is designed to deal with the sum rate maximization problem. In Step 1, we relax the problem by assuming each of the users can use all subcarriers simultaneously. With this assumption, we prove the convexity of the resultant power control problem and solve it via convex programming tools to get a power vector for each user; In Step 2, we allocate subcarriers to users by a heuristic greedy manner with the obtained power vectors in Step 1; In Step 3, the proposed power control schemes used in Step 1 are applied once more to further improve the system performance with the obtained sub-carrier assignment of Step 2. To solve the maximization problem with fixed subcarrier assignments in both Step 1 and Step 3, a centralized power allocation method based on projected gradient descent algorithm and two distributed power control strategies based respectively on pseudo-gradient algorithm and iterative waterfilling algorithm are investigated. Numerical results show that our proposed three-step resource allocation algorithm could achieve comparable sum rate performance to the existing near-optimal solution with much lower computational complexity and outperforms power controlled OMA scheme. Besides, a tradeoff between user fairness and sum rate performance can be achieved via applying different user power constraint strategies in the proposed algorithm
    • 

    corecore